Misura di g mediante macchina di Atwood

https://farelaboratorio.accademiadellescienze.it/esperimenti/fisica/27

Obiettivi

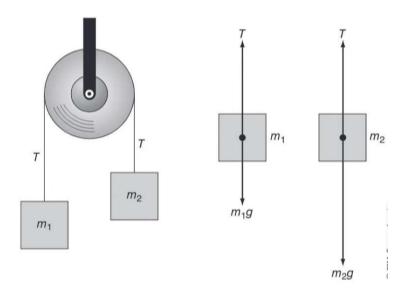
- Indagare la proporzionalità tra la differenza delle masse appese e l'accelerazione del sistema.
- Determinare l'accelerazione di gravità g.
- Determinare la massa effettiva della carrucola e la forza di attrito che agisce sul sistema.

Attrezzatura

- Macchina Atwood (puleggia con cuscinetti a sfere a bassissimo attrito o equivalente)
- Masse asolate calibrate, portamasse, bilancia da laboratorio (almeno al decimo di grammo)
- Cronometro digitale centesimale
- uno spago sottile, resistente e non elastico (un filo di lana, ad esempio)
- un metro a nastro (sensibilità 1 mm)

Teoria

La macchina di Atwood è un'esperienza spesso utilizzata per determinare l'accelerazione dovuta alla gravità (g). Il sistema è mostrato in figura ed è costituito da due masse alle estremità di una corda che passa su una puleggia. Nella figura è mostrato anche un diagramma a corpo libero delle forze (nella figura si suppone $m_2 > m_1$).



Applicando l'equazione fondamentale della dinamica (F=ma) alle masse (scelto un SDR con asse y rivolto verso l'alto):

$$T - m_1 g = m_1 a \tag{1}$$

$$T - m_2 q = -m_2 a \tag{2}$$

Dove, avendo supposto $m_2 > m_1$, allora m_1 sale (accelerazione con segno positivo), mentre m_2 scende, (accelerazione con segno negativo). Da notare che si è anche fatta l'ipotesi che la corda sia inestensibile e priva di massa (in questo modo le tensioni ai capi di m_2 e m_1 sono uguali, così come pure le accelerazioni).

Quando poi si ignorano anche l'inerzia e l'attrito della puleggia, l'accelerazione di gravità g può essere calcolata dalla ben nota equazione:

$$g = a \frac{m_2 + m_1}{m_2 - m_1} \tag{3}$$

Con questa semplificazione, tuttavia, i risultati sono deludenti. I dati suggeriscono che l'attrito e/o l'inerzia di rotazione svolgono un ruolo significativo nonostante i cuscinetti a basso attrito e la piccola massa della puleggia.

Un altro potenziale problema è la massa della corda stessa. Quando la corda si muove sulla puleggia, la massa della corda si sposta da un lato all'altro, provocando in effetti una differenza di massa variabile tra i due lati. Usare uno spago o un filo molto leggero può ridurre l'effetto ma non rimuoverlo.

Gli effetti dell'attrito dei cuscinetti e dell'inerzia combinata di puleggia e corda possono essere inclusi come masse effettive.

$$T_1 - m_1 q = m_1 a (4)$$

$$T_2 - m_2 g = -m_2 a (5)$$

$$T_1 R - T_2 R + \tau_f = -I_c \alpha \tag{6}$$

dove τ_f è il momento dovuto alla forza d'attrito che si esercita sui cuscinetti, I_c il momento d'inerzia della carrucola e α l'accelerazione angolare della carrucola. La forza d'attrito, e quindi il suo momento, può essere ritenuta costante per una data massa del sistema. Pertanto il momento può essere scritto come:

$$\tau_f = m_f g R \tag{7}$$

dove m_f può essere pensato come una piccola massa equivalente da aggiungere alla massa più leggera, m_1 , per tenere conto della piccola coppia di attrito della puleggia.

Scriviamo anche il momento di inerzia:

$$I_c = m_c R^2 \tag{8}$$

dove m_c è una massa effettiva della puleggia. Non è uguale alla massa effettiva della puleggia perché la massa della puleggia reale non è tutta distribuita sul cerchio esterno a raggio R. La massa della corda è inclusa in questa quantità perché anche la corda accelera e si trova a una distanza radiale R.

Inserendo la (7) e la (8) nella (6) e assumendo che la corda non slitti sulla carrucola, cosicché possiamo scrivere $\alpha = a/R$, possiamo risolvere il set di equazioni (5) - (7) per determinare g:

$$g = a \frac{m_2 + m_1 + m_c}{m_2 - m_1 - m_f} \tag{9}$$

Per ottenere g dobbiamo determinare tutte le quantità nell'Eq. (9). Questo è semplice ad eccezione di m_c e m_f . Ricordiamo che m_c è costante indipendente dalle masse appese utilizzate, mentre m_f varia (di norma, maggiore è la massa appesa, maggiore è l'attrito).

Riscriviamo l'equazione (9) nella forma:

$$m_2 - m_1 = a \frac{m_2 + m_1 + m_c}{g} + m_f \tag{10}$$

che implica una relazione lineare tra $m_2 - m_1$ e a, con intercetta di m_f se si mantiene costante $m_2 + m_1$, dove per futura convenienza indichiamo con:

$$S = \frac{m_2 + m_1 + m_c}{g} \tag{11}$$

la pendenza della retta.

Ripetendo l'esperienza, cambiando la somma delle masse appese $(m_2 + m_1)$, si possono ottenere diverse coppie di valori di S e $(m_2 + m_1)$

Riportando in grafico tali coppie si può ottenere come pendenza il valore di g cercato, infatti basta osservare che la (11) può essere posta nella forma:

$$m_2 + m_1 = Sg - m_c$$
 (12)

Procedimento

- Posizionare i due portapesi con masse uguali alle estremità della corda.
- 2. Spostare una piccola massa (circa 2 g) da m₁ a m₂; registrare i valori di m₁ e m₂ in tabella.
- 3. Posizionare m₁ nel punto più in basso della sua corsa e misurare la distanza di caduta di m₂ al punto più basso; registrare questo valore in tabella (*y*)
- 4. Rilasciare m_2 e contemporaneamente far partire il cronometro. Registrare il tempo di caduta in tabella (t_i) . Ripetere la misura almeno 5 volte
- 5. Calcolare <t> (tmedio) e l'accelerazione con la formula

$$a = \frac{2y}{\langle t \rangle^2}$$

- 6. Ripetere i passi da 2 a 5 in modo da raccogliere una decina di valori (stessa massa totale, ma differenti masse su m_2 e m_1).
- 7. Riportare in un grafico del foglio di calcolo i valori di $(m_2 m_1)$ in funzione di a, facendosi graficare la retta di tendenza, con l'equazione e il coefficiente di correlazione.
- 8. Ripetere i passi da 1 a 7 cambiando la massa totale $(m_2 + m_1)$ per almeno 4 o 5 casi diversi
- 9. Riportare in un grafico del foglio di calcolo i valori di (m₂ + m₁) in funzione di *S* (pendenze delle varie rette al punto 7), facendosi graficare la retta di tendenza, con l'equazione e il coefficiente di correlazione.

Grafici

V. punti 7 e 9 sopra

Compiti prima del laboratorio

- 1. Una forza netta di 3,50 N agisce su un oggetto di 2,75 kg. Qual è l'accelerazione dell'oggetto? Mostra, anche con un disegno, il tuo lavoro.
- 2. Descrivi il concetto di base della macchina di Atwood. Qual è la forza netta applicata? Qual è la massa a cui viene applicata questa forza netta? Mostra, anche con un disegno, il tuo lavoro.
- 3. Una macchina di Atwood è costituita da una massa di 1.060 kg e una massa di 1.000 kg collegate da una corda su una puleggia priva di massa e di attrito. Trovare l'accelerazione del sistema. Supponiamo che g sia 9,80 m/s². Mostra, anche con un disegno, il tuo lavoro.
- 4. Supponiamo che il sistema nella domanda 3 abbia una forza di attrito di 0,056 N. Determinare l'accelerazione del sistema. Mostra, anche con un disegno, il tuo lavoro.

Relazione di laboratorio

Considera ogni massa come un oggetto separato e disegna un diagramma di corpo libero per ciascuno. Cerca di rispettare le proporzioni tra i vettori.

Fissa un opportuno SDR.

Proietta la II legge della dinamica lungo gli assi del SDR scelto. Cosa succede alle equazioni se inverti il verso dell'asse verticale?

Tabella raccolta dati - Parte 1

1° prova con $m_1+m_2=X$ kg

m ₁ (kg)	m ₂ (kg)	m ₁ +m ₂ (kg)	m ₂ -m ₁ (kg)	y (m)	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)	t ₅ (s)	<t>(s)</t>	<a> (m/s²)

grafico 1: m_2 - m_1 vs <a> \rightarrow pendenza S_1

 2° prova con $m_1+m_2=Y$ kg

m ₁ (kg)	m ₂ (kg)	m ₁ +m ₂ (kg)	m ₂ -m ₁ (kg)	y (m)	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)	t ₅ (s)	<t>(s)</t>	<a> (m/s²)

grafico 1: m_2 - m_1 vs <a> \rightarrow pendenza S_2

[...]

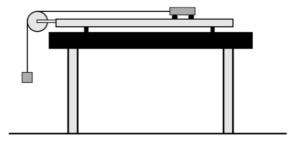
Tabella raccolta dati - Parte 2

m ₁ +m ₂ (kg)	S (kg s²/m)			
Х				
Υ				

grafico finale: m_2+m_1 vs $S \rightarrow$ pendenza g

Domande

- 1. Quali sono le possibili fonti di errore nella misurazione dei valori di $t \in y$? Che effetto avranno questi errori sui risultati? Suggerire una possibile modifica alla procedura che possa ridurre questi errori.
- 2. Quale set di dati nella parte 1 ha prodotto il valore più accurato di a? Come mai?
- 3. Supponiamo che uno studente modifichi l'impostazione usata per determinare g come rappresentato in figura.



Quale sarà l'espressione per determinare *g*?